4 research outputs found

    VLSI architecture for a Reed-Solomon decoder

    Get PDF
    A basic single-chip building block for a Reed-Solomon (RS) decoder system is partitioned into a plurality of sections, the first of which consists of a plurality of syndrome subcells each of which contains identical standard-basis finite-field multipliers that are programmable between 10 and 8 bit operation. A desired number of basic building blocks may be assembled to provide a RS decoder of any syndrome subcell size that is programmable between 10 and 8 bit operation

    VLSI single-chip (255,223) Reed-Solomon encoder with interleaver

    Get PDF
    The invention relates to a concatenated Reed-Solomon/convolutional encoding system consisting of a Reed-Solomon outer code and a convolutional inner code for downlink telemetry in space missions, and more particularly to a Reed-Solomon encoder with programmable interleaving of the information symbols and code correction symbols to combat error bursts in the Viterbi decoder

    Method for Veterbi decoding of large constraint length convolutional codes

    Get PDF
    A new method of Viterbi decoding of convolutional codes lends itself to a pipline VLSI architecture using a single sequential processor to compute the path metrics in the Viterbi trellis. An array method is used to store the path information for NK intervals where N is a number, and K is constraint length. The selected path at the end of each NK interval is then selected from the last entry in the array. A trace-back method is used for returning to the beginning of the selected path back, i.e., to the first time unit of the interval NK to read out the stored branch metrics of the selected path which correspond to the message bits. The decoding decision made in this way is no longer maximum likelihood, but can be almost as good, provided that constraint length K in not too small. The advantage is that for a long message, it is not necessary to provide a large memory to store the trellis derived information until the end of the message to select the path that is to be decoded; the selection is made at the end of every NK time unit, thus decoding a long message in successive blocks

    Architecture for time or transform domain decoding of reed-solomon codes

    Get PDF
    Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message
    corecore